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There is an increasing interest in the use of quantitative structure–activity relationship (QSAR) approaches as a progressive

tool in modelling and prediction of many physicochemical properties in host–guest interactions of macrocyclic complexes.

A review is presented on the QSAR modelling of macrocyclic compounds formation constants, which focus on two most

interesting macrocycles, e.g. crown ethers and cyclodextrins (CDs), with different guest molecules. The review starts with a

short overview on experimental methods of stability constant measurement, followed by a short explanation of the QSAR

methodologies. In the next section, we focus on and discuss QSAR techniques that used to predict the stability (binding)

constants or free energy complexation of some most interesting macrocyclic compounds, e.g. CDs and crown ethers, with

different guest molecules including anionic, cationic and neutral molecules.

Keywords: macrocyclic compounds; QSAR; formation constants; host–guest interactions; cyclodextrin; crown ethers

1. Introduction

The extensive development of host–guest chemistry

started in 1967 with the discovery of crown ethers by

Pedersen (1, 2). Supramolecular chemistry refers to the

chemistry that focuses on non-covalent interactions of

molecules and is a highly interdisciplinary field covering

the aspects of chemistry, physics and biochemistry. Host–

guest chemistry is an important subdivision of supramo-

lecular chemistry, in which usually two or more molecules

or ions are held together to form a complex in an unique

structural relationships by intermolecular forces (3, 4).

Host–guest inclusion complexes, as a specific type of

supramolecular structure, describe complexes in such a

way that a smaller guest molecule is held within the

internal cavity of a larger host molecule. These complexes

are composed of two or more molecules or ions that are

held together by non-covalent bonds, e.g. van der Waals

forces, hydrogen bonding, ionic bonding and hydrophobic

interactions. Non-covalent binding provides an invisible

wiring diagram for biomolecular pathways and is the

essence of host–guest and supramolecular chemistry (5).

The formation of a complex between host and guest is a

basic and important process in supramolecular chemistry;

therefore, stability constants are used as an important

criterion for the evaluation of the host–guest complexation

process (6).

A wide variety of experimental methods have been

employed in the determination of thermodynamic par-

ameters for the complexation of host–guest interactions.

These methods are based on the measurement of changes

of additive properties (concentration dependencies) includ-

ing chemical reactivity, molar absorptivity and other

optical properties (7, 8), aqueous solubility, calorimetric

titration (9, 10), NMR chemical shift (11, 12), pH metric

method (13, 14) and chromatographic retention times (15,

16) between host, guest and inclusion complexes.

Depending on the association strengths, a suitable method

to determine the stability constants must be selected. The

sensitivity of the technique must allow for the detection of

free and bound species (guest, host and host–guest

complexes) in solution (6). Principles and experimental

procedures of the various methods mentioned above can be

found in the references cited.

All the experimental methods for the stability constants

determination should be used with the proper precautions

and with appropriate skills to obtain reliable data. It should

be noted that thermodynamic data such as the stability

constants determined by different experimental methods

for the same reaction can significantly deviate from each

other (17, 18). In experiments, even small inaccuracies in

measuring species concentration or temperature may lead

to errors in complexation constants up to several log units

(19). The reliability, quality and accuracy of numerical

data on the stability constants values are needed in many

areas of chemistry such as chromatography, metals

extraction, ion exchange processes, complexometric

titrations and in many aspects of environmental, academic,

medical and industrial researches (20), but these data are
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not always experimentally available. Moreover, the

experimental methods of stability constants determination

often are time consuming, expensive and require the use of

pure compounds. Alternatively, computational methods as

useful and interesting modelling tools of estimation and

prediction of stability constants and physicochemical

properties provide a promising method for the calculation

of log K, especially in host–guest complexation processes.

They also offer a fast measure of predictability in the

absence of extensive experimental or computed data on

compounds properties. Quantitative structure–activity

relationship (QSAR) approaches, as one of the major

computational molecular modelling methodologies (21),

act as an effective means for the prediction and estimation

of activities or properties of compounds based on their

structures.

2. Overview of quantitative structure–property

relationship studies

All the properties of organic molecules including physical,

chemical, biological and technological properties depend

on their chemical structure and vary with it in a systematic

way. The establishment of quantitative correlations

between diverse molecular properties and chemical

structure is now of great importance to the society in

assessing and improving environmental, medicinal and

technological aspects of life. These are expressed as

quantitative structure – activity/property relationship

(QSAR/QSPR) that relates physical, chemical or physi-

cochemical properties of compounds to their structures.

The advantages of QSPR approaches lie in the fact that

they require only the knowledge of chemical structure and

are not dependent on any experimental properties. The

major goal of the QSPR studies is to find a mathematical

relationship between the property of interest and one or

more descriptive parameters (descriptors) derived from the

structure of the molecule (22, 23).

The three main steps in building QSAR models are

extracting descriptors from molecular structures, choosing

informative descriptors (feature selection) that are deemed

to be important for explaining desired property or activity

and constructions and development, validation and

interpretation of QSAR models (24–26).

Prior to feature extraction or descriptor calculation as

the first step in QSAR modelling, geometry optimisation

of molecules which finds the coordinates of a molecular

structure that represents a potential energy minimum is

required. The correct optimisation of molecular structures

to get meaningful values for the descriptors is very

important (27). Several geometry optimisation methods

are commonly used in QSAR modelling involving

empirical force field methods, semi-empirical methods

such as AM1, MNDO, PM3 and ab initio methods such as

Hartree–Fock and density functional theory (DFT)

methods (28). Drawing the molecules and optimisation

of their structures are usually done with many commercial

and non-commercial programs such as ChemDraw (29),

Hyperchem (30), Sybyl (31) and Discovery Studio (32).

The molecular descriptor is the final result of a logic and

mathematical procedure, which transforms chemical

information encoded within a symbolic representation of

a molecule into a useful number or the result of some

standardised experiment (33, 34). Based on the dependence

on the information about 3D orientation and conformation

of the molecule, descriptors have different kinds and thus

many different QSAR approaches have been developed.

Different kinds of descriptors involve 0D descriptors that

include empirical properties and numbers of atoms, 1D

descriptors that include substructures, 2D descriptors or

topological descriptors in which the structures of

compounds can be represented as graphs and 3D descriptors

or geometric descriptors that encode the 3D aspects of the

molecular structures that can be used in QSAR models (33,

35). Based on the desired context and enough knowledge of

molecular characterisations, we can also define some new

descriptors, e.g. Ghasemi et al. (36) defined some novel

descriptors to estimate lariat effect of the crown ether ring

on complexation process of sodium ion with 15-crown-5

derivatives that lead to a more predictive QSAR model. For

more clarification, some 0–3D descriptors of a 15-crown-5

ether are displayed in Table 1.

2D-QSAR is based on 2D descriptors that are being

independent of the 3D orientation of the compound and

range from measures of entities constituting the molecule,

through its topological and geometrical properties to

calculation of electrostatic and quantum chemical

descriptors or advanced fragment counting methods (36).

3D-QSAR refers to the application of force field

calculations requiring 3D structures. It involves obtaining

numerical descriptors based on the steric property (shape

of the molecule) and electrostatic fields based on the

applied energy function in conformation of molecular

structure from experimental data (X-ray crystallography)

or theoretical methods such as molecular mechanics (37,

38). Alignment-dependent 3D-QSAR descriptors require

uniform alignment of molecules in space prior to the

calculation of descriptors. Comparative molecular field

analysis (CoMFA) (39, 40) and comparative molecular

similarity indices (39, 41) are the most common

alignment-based 3D-QSAR methods. These methods

have two constraints. The correct conformation of a

molecule must be used, which may not even be the lowest

energy conformation, to compare structurally different

compounds; second, the compounds must be properly

aligned, a step that is time consuming and may introduce

user bias (42). Alignment-independent 3D-QSAR descrip-

tors were developed with an aim to overcome the

alignment problems. The common alignment-free 3D-

QSAR methods are comparative molecular moment

J.B. Ghasemi et al.616
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analysis (37, 43), weighted holistic invariant molecular

(WHIM) descriptors (44, 45), VolSurf descriptors (46),

and grid-independent descriptors (GRIND) (42).

Some of the most popular software packages for

generating an extensive list of 0–2D descriptors are

ChemBioOffice (47), Dragon (48), Gaussian (49), COD-

ESSA PRO (50), POLY (51), Chem-X (52) and TSAR (53),

and program package generating 3D descriptor involves

SYBYL (31), Pentacle (54) and Volsurf (55). These

programs generally generate hundreds or thousands of

different molecular descriptors but only some of them are

significantly correlated with the desired activity. Inter-

correlation of many of the descriptors, limitation of some

statistical methods in handling data sets with a large number

of descriptors to compound ratios and ambiguity of

interpretability of the final model are the negative effects of

a large number of descriptors on QSAR analysis. There are

many methods based on filtering and wrapper techniques

for selecting the best descriptors, or features, to be used in

construction of the QSAR model. In filtering method, no

model is built, and features are evaluated using some other

criteria. Correlation-based methods (56), which use

Pearson’s correlation coefficients as a preliminary filter

for discarding inter-correlated descriptors, statistical

criteria, e.g. Fisher’s ratio, ratio of the between-class

variance to the within-class variance, and the Kolmogorov–

Smirnov test (57) that measures the maximal absolute

distance between cumulative distribution functions of the

descriptor for individual activity classes are the common

filtering methods in feature selection. Wrapper approach,

which is based on constructing and evaluating a series of

QSAR models to select a subset of descriptors, includes

sequential backward feature elimination, sequential feature

forward selection (58), genetic algorithm (GA) (59, 60) and

simulated annealing (61). For speed and simplicity, the

combination of these techniques can also be used.

The main step of QSAR model is to derive a

correlation between the activity and the values of the

features. Different statistical or chemometric techniques

form the mathematical foundation for building a QSAR

model. Many different linear and nonlinear methods can

be used to build and develop a relationship between the

structure descriptors and many kinds of activities or

properties of the molecules. Linear models based on

multivariate analysis (62) include multiple linear

regression (MLR) (62), partial least square (PLS) (63,

64), principal component regression (65) and nonlinear

methods involving artificial neural networks (ANNs) (66,

67), the k-nearest neighbour (kNN) (68, 69), GAs (70, 71)

and support vector machines (SVMs) (72, 73).

Validation and development of the models is an

important and crucial step of any QSAR study. The

reliability of a QSAR model depends on how well the model

can predict the interested property or activity of compounds

outside the training set rather than how well the model

reproduces the property/activity of compounds included in

the model (74). A reliable and predictive QSPR model

should be statistically significant and robust, be validated by

making accurate predictions for external data sets not used

in the model development and have a defined domain of

application (75). Various procedures and quantitative

parameters are used to express the performance of QSAR

models. The most common statistical parameters are

Pearson’s correlation coefficient R 2 as ‘model fitness’ that

should preferably be as close to unity as possible, the

residual standard deviation (RSD), as small as possible and

F-values (75, 76). Leave-one-out cross-validated corre-

lation coefficient Q 2 (LOO R 2) as one of the most popular

validation criteria (75), leave-many-out (77), bootstrapping

(78) and permutations of the data (randomisation test or

scrambling) that represent the model robustness (77) are

internal validation methods. Use of an external validation

set is one of the most widely used methods of correlation

testing. The purpose of an external validation is to evaluate

how well the obtained model generalises objects in which

the data have not taken part in the process of model

Table 1. Example of different kinds of descriptors for a typical
compound.

O
1

23

O
4

5

6

O 7

8

9

O
10

11

12

O13

14

15

16

O
17

18

0D descriptors* Molecular weight ¼ 250.33
Number of atoms ¼ 39
Number of oxygen atom ¼ 6

1D descriptors* Number of ring secondary CSP3 ¼ 9
Hydrophilic factor ¼ 20.134
Octanol/water partition coefficient
(log P) ¼ 21.29

2D descriptors* Randic connectivity index ¼ 8.432
Global topological charge index ¼ 0.135
Symmetry index ¼ 45.343

3D descriptor* Spherocity ¼ 0.687
1st component size directional WHIM
index ¼ 6.702
Total positive charge ¼ 0.2

Self-defined
descriptors

Distance between O13 and O1 ¼ 3.074 (A8)
Number of lariat units ¼ 1
Number of arms length of longest
arms ¼ 104

*Calculated by Dragon software.
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development (73, 78). A valid model with high generalis-

ation ability has R 2 and standard deviation (SD) for the

validation set similar to those of the model. The predictive

power of the QSPR models is often quantified in terms of

the root mean square error (RMSE), RSD or predictive

squared correlation coefficient R2
pred (79). There are many

other statistical parameters to assess the goodness of fit,

robustness and predictivity of the models such as the

Kubinyi function (FIT) (80, 81), Akaike’s information

criteria (AIC) (82, 83), Cook’s distance, etc. (84). Once a

reliable model is established, it could be possible to predict

the property of compounds and know which structural

factors play important roles in the interested property (24–

26). The extraction of the structure–property relationship

information encoded in the model or model descriptor

interpretability is one of the important aspects of

QSAR/QSPR models (85). A general flowchart of QSAR

methodologies is summarised in Figure 1.

There are interesting developments in the area of

QSAR/QSPR and related methods in the estimation

of stability constants (log K) of the complexes of

macrocycles with different cationic, anionic and neutral

compounds. Here, we have discussed and reviewed

QSAR/QSPR methods of stability constants prediction in

host–guest complexation of some interesting macrocyclic

ligands such as crown ethers and CDs with anionic,

cationic or neutral guest molecules.

3. Macrocyclic compounds

As defined by IUPAC, a macrocycle is a cyclic

macromolecule or a macromolecular cyclic portion of a

molecule (86). This definition is not so clear; thus, there

are other definitions of macrocyclic compounds. In

supramolecular chemistry, a macrocycle is assigned as a

molecule containing a number of binding sites that are

arranged around the closed system (87). Organic chemists

specify a cyclic organic molecule usually with 12 or more

atoms in the ring (88), and coordination chemists define a

macrocycle as a cyclic molecule with three or more

potential donor atoms that can coordinate to a metal centre

(89). Generally speaking, macrocycles comprise a large

group of heterocyclic organic compounds that contain

sizeable central holes or cavities in which a cation, anion

or a neutral molecule can be encapsulated.

The ability of macrocyclic compounds to form stable

complexes with various ionic and neutral spices and the

recognition capabilities of these structures are their main

advantages over simpler acyclic compounds. Because of

their unique complexation characteristics, macrocyclic

ligands have been studied for over four decades in host–

guest complexation process. Applications of macrocycles

that ranged from thorough investigations of fundamental

principles of photophysics (90, 91), electrochemistry (92),

spectroscopy (93, 94), nanotechnology (95, 96), molecular

recognition (97, 98), separation science (99, 100) and

medicine (101) usually have host–guest interactions as a

focal point.

The host–guest size-fit cavity of macrocycles and

molecular symmetry play a crucial role in the complex

stability. The size-fit effect appears to play a subsidiary

role in the inclusion complexation of the host–guest

molecules. The fit of the entire or at least a part of the guest

molecule in the cyclodextrin host cavity determines the

stability of the inclusion complex and the selectivity of the

complexation process. The conformational flexibility of

the host and the elasticity of the ligand are the important

factors for successful thermodymanic and kinetic selec-

tivity of inclusion complexation (102, 103).

Izatt and his co-workers have made great contributions

to the accumulation of thermodynamic data of crown

Figure 1. General flowchart of QSAR models.
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ethers complexation and have published comprehensive

reviews in which extensive discussions are given based on

the number of thermodynamic and kinetic data, log K, DH

and DS, compiled for various crown ethers and different

cations, anions and neutral molecules (103–106). Com-

plexation thermodynamics of natural and modified a-, b-

and g-cyclodextrins (CDs) for 1:1 inclusion complexation

of various organic guests was well reviewed and collected

by Rekharsky et al. (107). The IUPAC stability constants

database (108), National Institute of Standards and

Technology (109) and THECOMAC (110) database are

the most common and comprehensive databases of

complexes stability constants.

3.1 Crown ethers

Crown ethers, synthesised first by Pedersen in 1967 (1, 2),

are the cyclic polyether molecules, such as compounds 1–3

in Figure 1, with multiple heteroatoms (three or more)

incorporated in a monocyclic carbon backbone. The central

feature of crown ethers is their ability to form selectivewell-

defined complexes with a wide variety of ionic and neutral

species in different solvents. Their potential to form

stable complexes, exhibiting strong affinity and a high

selectivity, especially for alkali and alkaline earth metal

ions, is due to the nature of their multiple recognition sites

and to the presence of a hydrophilic cavity delineated by a

lipophilic envelope. Several factors influence on the

stability of the crown ethers complexes such as the relative

size of the guest (neutral or ionic) and the macrocycle

cavity, the number and the nature of the binding sites and on

the nature of the solvent. Many different modifications of

the crown ethers, such as changing the ring size, the kinds of

substituents and the types of donor atoms, have been made

to enhance their complexation properties. Aza-crown

ethers, thio-crown ethers and lariat crown ethers are the

common types of crown ethers. Crown ethers that were

extensively studied about their complexing ability, phase

transfer catalysis, metal cation transport and metal cation

analysis have been reported (111, 112). They are also

widely applied in chemical technology and analytical

chemistry as ion pair extractants, membrane transfer, ion

carriers, masking agents and sensors (113–116). Crown

ethers continue to be one of the most useful parts of

supramolecular (host–guest) chemistry (117). An over-

view of some of the crown ether structures is provided in

Figure 2.

3.2 Cyclodextrins

CDs are cyclic oligosaccharides derived from starch

containing 6 to 10 or more (a-1,4)-linked glucopyranose

units. All the CDs form doughnut-shaped molecules with

their hydroxyl groups on the outside of the molecule and a

relatively non-polar and hydrophobic cavity in the middle,

which can encapsulate a guest molecule to form an inclusion

complex with a variety of guest molecules (118). Figure 3

represents the general structure of CDs, chemical structure

and 3D structure of b-CD. In Table 2, some of the structural

and physicochemical properties of natural CDs are listed

(118). Among the natural CDs, b-CD has been used more

widely in different areas because it is readily available and its

cavity size is suitable for the widest range of guest molecules.

CDs have attracted tremendous interest in many

different fields recently such as catalysis, separation science

and technology, drug delivery, and pharmaceutical

application (119–122). Great efforts have been devoted to

the quantitative understanding of host–guest interactions

due to the importance of the inclusion phenomena in

biochemical systems. The enhancement of characteristics,

such as stability, aqueous solubility and reduced volatility,

can be modified through chemical reactions of CDs. The

most common chemically modified CDs are 2-hydroxypro-

pyl-b-CD, randomly methylated b-CD and sulphobutyl

ether-b-CD respectively (123, 124).

4. QSAR/QSPR prediction of the stability constants

of macrocycles

4.1 0–2D QSAR/QSPR

Traditional QSAR/QSPR methods have been used for

decades to correlate and predict the activity of molecules

OO

O

O

O

O

O

O

O

O

O
O

NO

15-Crown-5 Ether

(a) (b) (c)

Dibenzo-18-Crown-6 Lariat aza-crown ether

N
HO2CH2C

CH2CO2H

Figure 2. Structures of typical crown ethers.
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(125). They are fast, simple and include clearly defined

physicochemical descriptors and are best suited for the

analysis of a large number of compounds. Linear solvation

energy relationship (LSER) (126) as a powerful QSAR

approach is the first method for the prediction of stability

constant of inclusion complexes of macrocycles.

In a significant work, Matsui and Mochida (127)

determined the thermodynamic stabilities for a- and b-CD

complexes with a variety of alcohols including 27

saturated aliphatics, 5 alicyclics and 2 aromatic alcohols.

Partition coefficient of alcohol in a diethyl ether–water

system was used as the only independent parameter to

predict the stability constants between a- and b-CD and

1-alkanols with R (correlation coefficient) .0.99. They

also applied two indices of molecular bulkiness, Taft’s

steric substituent constant (Es) and n parameter (128), to

build QSAR models. They concluded that hydrophobic

and van der Waals interactions are of primary importance

in inclusion process of CD–alcohols complexation. van

der Waals interactions are preferential for a-CD and

hydrophobic forces for b-CD-1-alkanols inclusion com-

plexes. As the bulkiness of alcohols increases, the stability

of a-CD inclusion complex with 1-alkanols decreases

owing to van der Waals repulsion, while that of b-CD-1-

alkanols inclusion complexes increases due to the

attainment of the close van der Waals contact of alcohols

with b-CD cavity.

Lopata et al. reported a quantitative structure–stability

relationship for the inclusion complexation of 17

barbituric acid derivatives with a- and b-CD. Contribution

of group R1 (an alkyl group on carbon number 7 in

barbiturate ring) to hydrophobicity, Taft substituent

constant, the molar refractivity and chloroform–water

partition coefficient were used as descriptors. The results

suggested that in a-CD–barbiturate complexes the CD

cavity includes only R1, while in b-CD complexes both R1

and (a part of) the barbiturate ring are included (129).

Park et al. measured the stability constants of inclusion

complexes of b-CD and some organic molecules and then

used the LSER to study intermolecular forces affecting the

stability of inclusion complexes between CD and the guests.

It was found that increasing the guest molecular

size stabilises the complex by virtue of increasing dispersive

interactions between the hydrophobic interior of the CD

cavity and the guest, whereas increasing guest dipolarity and

hydrogen bond (HB) acceptor basicity leads to a decrease in

the stability of the complex due to the stronger dipolar and

hydrogen bonding interactions with water, which is more

dipolar and has an acidic HB than CD (130).

An MLR analysis was carried out for the inclusion

complexation of b-CD binding with 40 mono- and 1,4-

disubstituted benzenes (131) from substituent molar

refraction (Rm), hydrophobic constant (p) and Hammett

constant (p). It was found that van der Waals forces,

hydrophobic interactions and electronic effects comprise

the driving forces for the binding of b-CD with mono- and

1, 4-disubstituent benzenes. Multivariate linear regression

models from the Rm, p and d of a- and b-CD with 24

mono-substituted benzenes inclusion complexes, with

correlation coefficient of 0.94 for a-CD and 0.91 for b-CD

were also reported (132, 133).

In a significant work, Liu and Guo (134) demonstrated

a nonlinear free energy relationship model by taking the

possibility of different inclusion orientations into con-

sideration for the molecular recognition of a- and b-CD

with mono- and 1,4-disubstituted benzenes. GA was

employed to optimise the model with independent

variables Rm, p and d, which reflect the volume,

Figure 3. (a) General CDs structure, (b) chemical structure and (c) 3D structure of b-CD.

Table 2. Some characteristics of natural CDs.

Cyclodextrin a-cyclodextrin (a-CD) b-cyclodextrin (b-CD) g-cyclodextrin (g-CD)

Number of glucose unit 6 7 8
Water solubility (g/l) 145 18.5 232
Internal diameter (A8) 4.7–5.2 6–6.4 7.5–8.3
Height (A8) 6.7 7.0 7.0
Approx. cavity volume in 1 mol CD (ml) 104 157 256
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hydrophobicity and electronic property of the substituents

in the guest compounds, respectively. Provided that one of

the substituents (X or Y) of mono- or 1,4-disubstituted

benzene (X-C6H4-Y) was located in the cavity of CDs,

they defined two microscopic binding constants (KX and

KY) as the following:

KX ¼
½CD:X 2 C6H4 2 Y�

½CD�½X 2 C6H4 2 Y�

and

KXY ¼
½CD:Y 2 C6H4 2 X�

½CD�½X 2 C6H4 2 Y�

Thus,

Ka ¼ KX þ KY :

The developed model offered quantitative information

on the CD host–guest orientation and showed good

agreement between the calculated results with the

experimental data.

Guo et al. (135) described a wavelet neural network

(WNN) to model construction and prediction of the

binding constants for the inclusion of a-CD with mono-

and 1,4-disubstituted benzene from the Rm and p. The ln

Ka values calculated by the WNN model had a good

predictive ability with a SD of 0.14 and a correlation

coefficient of 0.995. In similar works, they also applied

ANN to predict binding constants for the inclusion

complexation of a-CD (136) and b-CD (137) with

benzene derivatives from Rm, p and d.

The association constants (Ka) for the inclusion

complexation of a-CD with 72 mono- and 1,4-disubsti-

tuted benzenes were predicted by ANN with Rm and p as

input parameters in the work of Liu and Guo. The results

again indicated that the van der Waals forces and

hydrophobic interactions mainly contributed to the driving

forces for the inclusion complexation of a-CD with

benzene derivatives (138). They also applied a WNN to the

inclusion complexation of b-CD with 40 mono- and 1, 4-

disubstituted benzenes from Rm, p and d of the guest

compounds as input parameters. WNN models compared

to back propagation neural network and MLR models

yielded a better model with R . 0.99 and SD ,0.1. The

obtained results suggested that b-CD inclusion complexa-

tion is mainly driven by van der Waals force, hydrophobic

interaction and electronic effects (139).

The combined use of potentiometry, circular dichro-

ism, H NMR, UV spectroscopy and quantitative

structure–affinity relationships of inclusion compounds

of 16 para-substituted phenols and b-CD was reported

(140). A linear regression based on Rm, p and d with a

good correlation between experimental and theoretical

formation constants demonstrated the influence of dipolar

interaction, since a withdrawing substituent favours the

complex formation.

Davies and Deary used linear free energy relationships

besides experimental methods for the calculation of the

binding constants of complexation of different guest

molecules with a-CD. They reported the determination

and calculation of the stability constants of the complexes

of a-CD and 4-methyl-, 4-nitro-, 4-sulphonato- and 3-

chloro-substituted perbenzoic acids, perbenzoates and

benzoates by iodometric titration (141), 22 para-

substituted aryl alkyl sulphides, sulphoxides and sul-

phones by spectrophotometry (142), 21 para-substituted

acetophenones and related aryl ketones spectrophotome-

trically or potentiometrically (143) and 48 substituted or

1,4-disubstituted benzene derivatives (144). The obtained

linear free energy relationship models were described by

dx and dy, which are the Hammett dp values for the x- and

y-substituents, Rmx and Rmy represented the x- and y-

substituents molar refractivity, respectively, and dxdy is an

interaction term. Several mechanisms for cooperative and

orientation of the different ionic or neutral guest species in

the cyclodextrin cavity were suggested.

A quantitative structure–binding relationship and

ANN with different back propagation algorithms of a

data set of 17 barbiturates as guests to a- and b-CDs were

reported (145). Four descriptors, derived from Lopata

work (129), were used as the inputs of network involving

contribution of group R1 (an alkyl group on carbon number

7 in barbiturate ring) to hydrophobicity, Taft substituent

constant, the molar refractivity and chloroform–water

partition coefficient. The radial basis function (RBF)

networks were also applied with the same descriptors on

this barbiturate data set (146). It concluded that the effects

of specific substituents were more efficient rather than the

effects of the entire molecule in host–guest complexation

process of barbiturates and CDs.

Table 3 represents the summary of LSER approaches

with an overview of statistical methods used and model

prediction performance.

The method of substructural molecular fragments

(SMF) is based on the splitting of a molecular graph into a

limited number of topological fragments and calculation

of their contributions to a given property X (147). Solov’ev

and Varnek used SMF method to build structure–property

models of the stability constants for 56 complexes of

crown ethers including unsubstituted macrocycles, their

benzo, cyclohexyl and lariat derivatives with sodium ion

in methanol. They also assessed the stabilities of the

inclusion complexes of the b-CD with mono- and 1,4-

disubstituted benzenes. In further work, Varnek and Wipff

(148, 149) applied SMF method to assess the macrocyclic

effect for the complexation of crown ethers, polyethers

and glymes with sodium, potassium and caesium ions

in methanol. The several obtained ‘best-fit’ models, with
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linear and nonlinear equations, showed good agreement

between calculated and experimental data of the stability

constants, with R . 0.95 and SD , 0.5. Solov’ev et al.

demonstrated a SMF method to represent structure–

property models of the stability constant (log K) for the 1:1

(M:L) complexes of Sr2þ with various organic ligands

including crown ethers and azacrown ether derivatives of

12-crown-4 and 18-crown-6 in water at 298 K and ionic

strength 0.1 M. The obtained models that were

characterised by R 2 . 0.91 and Q 2 (leave-one-out

cross-validation correlation coefficients) . 0.85 were

utilised for the generation and screening of a combinatorial

library of virtual ligands (150).

Katritzky et al. (151) developed the QSPR modelling

of binding energies for 1:1 complexation systems among

218 different organic compounds including aromatic

hydrocarbons, alcohols, phenols, ethers, esters, aldehydes,

ketones, acids, sulphur-containing compounds, nitriles,

anilines, heterocyclic compounds, steroids and barbitu-

rates with b-CD using multiple regression analysis. They

used two different QSPR approaches. In descriptor

approach, a large variety of molecular descriptors on the

basis of the 3D geometrical or quantum chemical structure

generated by CODESSA PRO were applied to yield a

model with R 2 ¼ 0.796 and Q 2 ¼ 0.779. Fragment-based

approach that used SMF descriptors has given a better fit

with R 2 ¼ 0.943 and Q 2 ¼ 0.848. Zhokhova et al. (152)

used the same data set of 218 organic compounds to built

QSPR model using SMF descriptors and multiple linear

regressions (MLRs).

Table 4 represents the summary of SMF approaches

with an overview of statistical methods used and model

prediction performance.

As discussed in Section 2, there are many commercial

and non-commercial program packages to calculate

hundreds to thousands of theoretical descriptors. Table 5

represents the summary of QSAR/QSPR approaches,

based on the theoretical descriptors driven from different

software packages, with an overview of statistical methods

used and model prediction performance.

ANN as a powerful tool of approximation, compu-

tation and pattern recognition (153, 154) have been

receiving growing attention from chemists in different

areas (155–157).

Tetko et al. used several linear and nonlinear methods

including associative neural networks (ASNNs), SVMs,

kNNs, maximal margin linear programming, RBF neural

network (RBFNN) and MLR for QSPR of the stability

constants log K for 1:1 (M:L) and log b for 1:2 complexes

of metal cations Agþ and Eu3þ with diverse sets of

macrocyclic, heterocyclic and acyclic agents bearing

acidic, basic or neutral functions. Four structurally diverse

data sets include 161 (Agþ) and 241 (Eu3þ) log K and 112

(Agþ) and 81 (Eu3þ) log b values for the complexation of

Table 3. Summary of LSER approaches and source information.

Host Data set Statistical method Model prediction performance Reference

a-CD 17 1-alkanols MLR R . 0.95, SD , 0.27 (127)
b-CD 18 1-alkanols R . 0.93, SD , 0.38
a-CD 17 barbituric acid derivatives MLR R ¼ 0.925, SD ¼ 0.183
b-CD R ¼ 0.95, SD ¼ 0.144 (129)
b-CD 20 organic molecules MLR R ¼ 0.927, SD ¼ 0.27 (130)
b-CD 40 mono- and 1,4-disubstituted benzenes MLR R ¼ 0.95, SD ¼ 0.24 (131)
a-CD 24 mono-substituted benzenes MLR R ¼ 0.94, SD ¼ 0.33
b-CD R ¼ 0.91, SD ¼ 0.24 (133)
a-CD 24 mono-substituted benzenes MLR R ¼ 0.96, SD ¼ 0.29
b-CD R ¼ 0.94, SD ¼ 0.21 (132)
a-CD 56 mono- or 1,4-disubstituted benzene GA R ¼ 0.82 (134)
b-CD R ¼ 0.82
a-CD 45 benzene derivatives WNN R ¼ 0.995, SD ¼ 0.14 (135)
a-CD Benzene derivatives ANN – (136)
b-CD 24 benzene derivatives ANN R ¼ 0.94, SD ¼ 0.19 (137)
a-CD 72 mono- and 1,4-disubstituted benzenes ANN R ¼ 0.961, SD ¼ 0.415 (138)
b-CD 40 mono- and 1,4-disubstituted benzenes WNN R ¼ 0.992, SD ¼ 0.089 (139)
b-CD 16 phenolic compounds MLR R ¼ 0.965 (140)
a-CD Substituted perbenzoic and benzoic acids – – (141)
a-CD para-substituted aryl alkyl sulphides, sulphoxides and

sulphones
MLR R ¼ 0.923, SD ¼ 0.345 (142)

a-CD 21 para-substituted aromatic ketones MLR – (143)
a-CD 48 substituted or 1,4-disubstituted benzene derivatives MLR R ¼ 0.923, SD ¼ 0.345 (144)
a-CD 17 barbituric acid derivatives ANN R ¼ 0.9583, SD ¼ 0.028 (145)
b-CD
a-CD 17 barbituric acid derivatives ANN R 2 ¼ 0.99 (146)
b-CD
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Agþ and Eu3þ with organic molecules in water at 298 K

and ionic strength 0.1 M. Three types of descriptors, E-

state indices and counts and SMF descriptors were used.

Among the many number of significant models, nonlinear

methods, with the highest value of R 2 ¼ 0.79 and

RMSE ¼ 1.17, showed a significantly better performance

than the models built using MLR analysis. However, the

averaging of several MLR analysis models based on SMF

Table 4. Summary of SMF approaches and source information.

Host Data set Statistical method Model prediction performance Reference

Crown ethers b-CD 56 (Naþ) 29 1,4-disubstituted
benzenes

Linear and nonlinear regression R ¼ 0.958, SD ¼ 0.21 (147)
R ¼ 0.909, SD ¼ 0.28

Crown ethers 58 (Naþ) Linear and nonlinear regression R ¼ 0.978, SD ¼ 0.16 (148)
106 (Kþ) R ¼ 0.973, SD ¼ 0.22
28 (Csþ) R ¼ 0.987, SD ¼ 0.17

Crown ethers 69 (Naþ) Linear and nonlinear regression R 2 ¼ 0.939–0.947 (149)
123 (Kþ) Q 2 ¼ 0.804–0.864
31 (Csþ) s ¼ 0.48–0.61

Crown ethers 130 (Srþ2) Linear and nonlinear regression R 2 ¼ 0.940, Q 2 ¼ 0.927 (150)
b-CD 218 organic compounds MLR R 2 ¼ 0.967, Q 2 ¼ 0.877 (151)
b-CD 218 organic compounds MLR R 2 ¼ 0.876, Q 2 ¼ 0.704 (152)
Crown ethers 161 (Agþ) ANN, SVM, KNN, MLR R 2 , 0.62 (nonlinear) (158)

241 (Eu3þ) R 2 , 0.77 (nonlinear)
a-CD 102 organic compounds 218

organic compounds
Nonlinear regression R 2 ¼ 0.868 (154)

b-CD R 2 ¼ 0.917

Table 5. Summary of QSAR/QSPR approaches and source information.

Host Data set Statistical method Model prediction performance Reference

Crown ethers 14 (Naþ) ANN – (159)
15 (Kþ) –
16 (Csþ) –

Crown ethers 92 (Naþ) MLR SD ¼ 0.36–1.42 (160)
92 (Caþ2)
92 (Znþ2)

15-crown-5 ethers 58 (Kþ) MLR R 2 ¼ 0.945, SD ¼ 0.011 (161)
15-crown-5 ethers 88 (Naþ) MLR, PLS R 2 ¼ 0.86, q 2 ¼ 0.72, R2

pred ¼ 0:885 (36)
15-crown-5 ethers 54 (Naþ) GA-MLR R 2 ¼ 0.93, q 2 ¼ 0.88, R2

pred ¼ 0:83 (162)
b-CD 33 MLR R 2 ¼ 0.92, q 2 ¼ 0.901 (163)
DMAB-a-CD 10 R 2 ¼ 0.861, q 2 ¼ 0.784
DMAB-b-CD 28 R 2 ¼ 0.893, q 2 ¼ 0.795
DMAB-g-CD 13 R 2 ¼ 0.89, q 2 ¼ 0.821
a-CD 102 organic compounds MLR R 2 ¼ 0.868, SD ¼ 1.97 (165)
b-CD 218 organic compounds R 2 ¼ 0.917, SD ¼ 1.66
b-CD 18 heterocyclic compounds PLS R 2 ¼ 0.972, q 2 ¼ 0.782 (167)
a-CD 179 MLR –
b-CD 310 R 2 . 0.515 (170, 171)
g-CD 51 –
a-CD
b-CD

56 mono- and 1,4-disubstituted
benzene

MLR R ¼ 0.933, q ¼ 0.920
R ¼ 0.94, q ¼ 0.927

(172)

a-CD 22 mono-substituted benzene and
phenol

MLR – (173)

a-CD 48 MLR R ¼ 0.78, Q 2 ¼ 0.521 (174)
b-CD 70 R ¼ 0.944, Q 2 ¼ 0.861
g-CD 45 R ¼ 0.947, Q 2 ¼ 0.863
b-CD 258 organic compounds PLS – (176)

MLR
b-CD 233 organic compounds MLR R 2 ¼ 0.868, Q 2 ¼ 0.851 (177)
b-CD 86 drugs MLR R 2 ¼ 0.78, Q 2 ¼ 0.67 (178)
b-CD 233 organic compounds MLR R 2 ¼ 0.841, Q 2 ¼ 0.821 (180)
b-CD 74 chiral compounds SVM R 2 ¼ 0.99, Q 2 ¼ 0.97 (181)
a-CD 73 aliphatic compounds MLR R 2 ¼ 0.909, Q 2 ¼ 0.898 (183)
b-CD 37 aliphatic compounds R 2 ¼ 0.912, Q 2 ¼ 0.91
b-CD 233 organic compounds PLS R 2 ¼ 0.87, Q 2 ¼ 0.75 (189)
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descriptors provided as good of a prediction as the most

efficient nonlinear techniques (158).

Gakh et al. (159) applied neural network method for

the prediction of complexation constants of simple crown

ethers with alkali metal cations (Naþ, Kþ and Csþ) in a

single solvent (methanol) at 258C. The number of aromatic

rings, the size of a macrocycle and the number of oxygen

atoms were used as an input vector in the training sets

containing only 14–16 ligands. The obtained ANN model

could predict the stability constants of crown ether

complexes based on the chemical structures encoded in

their chemical names with an average accuracy of ^0.3

log K units.

Shi and McCullough demonstrated a simulation

statistical procedure for quantitative predicting complexa-

tion equilibrium constants for different crown ethers,

cryptands and spherands with sodium, calcium, zinc and

ammonium ions in pure or mixed solvents system. The

method involves the combination of solvent-free molecu-

lar mechanics and molecular dynamics (MD) simulations

with MLRs to experimental log K data to incorporate

solvent and other effects (160). Various experimental and

calculated parameters such as radius and electronegativity

for metal cations, dielectric constant for solvents, total

energy and its components for ligands and some others as

descriptors were used in MLR analysis to give standard

errors in log K ranging from 1.42 in the largest system to

0.36 in the smallest.

Ghasemi and Saaidpour (161) applied a QSPR

modelling of stability constants of diverse complexes of

15-crown-5 ethers with potassium cation at 258C in

methanol solution. Structure-based descriptors from COD-

ESSA PRO software and best multilinear regression

(BMLR) were used to build QSPR models. They concluded

that complexation phenomenon was mainly related to

cation–ligand electrostatic interactions, steric deformation

of the ligand and conformational changes of the ligand

accompanying the complexation and repulsion between

neighbours CZH and CZC bonds. In another article, they

defined some novel descriptors to consider lariat effect, the

effects of different pendant arm substituents and also

conformation changing (shape and symmetry) in the crown

ether rings on complexation reactions. MLR and PLS

techniques were used for modelling the stability constants

of 15-crown-5 derivatives complexes with sodium cation at

258C in methanol solution (36). Combination of new

defined descriptor and Dragon descriptors could lead to

relevant QSPR models in comparison with Dragon-based

descriptors that allow improving the robustness of stability

constants predictions. A GA-based MLR (GA-MLR)

method was applied for QSPR modelling of the stability

constants for 65 complexes of 15-crown-5 with sodium

cation (Naþ) in methanol (162).

In a valuable and significant work, Suzuki et al. (163)

demonstrated the application of classical QSAR and

CoMFA to the complexation of some natural b-CD and

modified a-, b- and g-CD, which bear one p-(dimethy-

lamino)benzoyl (DMAB) moiety, with guest molecules of

widely varying chemical structures and properties.

Classical QSAR of the binding constants of natural b-

CD with 33 diverse guest molecules which were described

by just two parameters, the molecular connectivity index

and the octanol–water partition coefficient (log P),

suggested a good predictive ability of the model with

R 2 ¼ 0.92 and Q 2 ¼ 0.901. A nonlinear dependency on

binding constants on the zeroth and/or first-order

molecular connectivity index as a measure of size was

found for the natural b-CD: guest system. The correlation

analysis of mentioned descriptors with modified a-, b- and

g-CD showed good predictivity with statistical parameters

of R 2 and Q 2 in a range of 0.86–0.89 and 0.78–0.82,

respectively. 3D-QSAR/CoMFA models constructed for

the DMAB-a- and b-CD systems yielded statistically

significant values of R 2 and Q 2 which were comparable to

those obtained by MLR models. In further work, Suzuki

developed a group contribution method (164) to build

QSAR models of the binding constants or the free energies

of complexation between a- and b-CD based on the

database consisting of 102 and 218 diverse guest

molecules, respectively (165). He found a nonlinear

relationship based on the first-order connectivity index

with R 2 ¼ 0.868 for a-CD and R 2 ¼ 0.917 for b-CD

inclusion complexes. The predictive ability of the obtained

models, which was tested by a de novo (166) prediction,

using the data set of host–guest systems not included in

the deduction of the models, showed an accurate

prediction of the free energies of the complexation.

A QSAR study of the complexation of a series of

unsubstituted benzo- or dibenzo-fused heterocycles, with a

single or two heteroatoms (O, S, N) in the ring, with b-CD

was reported (167). The physicochemical properties and

the spectroscopic properties such as 13C NMR chemical

shifts of carbons of the benzene ring and the number and

type of heteroatoms were selected as descriptors. Central

composite design (168) was chosen as a strategy for

selection of the training set. The results of the PLS

modelling of the stability constants as a function of the

heterocyclic structure showed that separate models for

heterocyclic compounds containing N, alone or with a

second heteroatom, and for compounds containing O or S

are needed in order to have a satisfactory predictive ability.

Structure-based parameters (169) such as molecular

size, hydrophobicity, rotatable bonds, electronic properties

and the presence or absence of functional or structural

moieties were used to predict the stability constants of 1:1

complexes for 179, 310 and 51 guest molecules with

unsubstituted a-, b- and g-CDs. At first, models for all CD

developed only with size (molecular volume) of

molecules, but size alone cannot account for a consider-

able amount of variance in the complex stability data, and
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this is especially true for structures larger than the limiting

size requirement of the corresponding CD cavity. Thus,

other structure-based parameters were used to build

structure–complex stability relationships relying on

molecular size-based model (170, 171).

The QSPR model of association constants (Ka) for the

inclusion complexation of b- and a-CD and mono- and

1,4-disubstituted benzene derivatives by multivariate

linear regression analysis using a combination of 2D and

3D-connectivity indices and quantum chemical descriptors

was described by Estrada et al. (172). The best obtained

QSPR models showed a good predictability of a-CD and

b-CD with R . 0.93, Q . 0.92 and SD , 0.5 and

R . 0.94, Q . 0.92 and SD , 0.5, respectively. They

also concluded that the main driving force for the

complexation of a-CD with benzene derivatives is the

electronic repulsion, while van der Waals and hydrophobic

interactions were prominent in b-CD complexation

process with these guest molecules.

A QSPR model for the estimation of the free energy of

formation of host–guest complexes of a-CD with benzene

derivatives was reported (173). The used independent

variables were polarisability (contribution of van der

Waals interactions), distribution factor in the octanol–

water system (log P, contribution of hydrophobic

interactions), the capability of H-bonding of substituent

Xi with the a-CD void and the number of heavy atoms in

the substituent. They derived different QSPR models of

free energies of formation for mono-substituted benzene

derivatives, phenol derivatives and symmetrical 1,4-

disubstituted benzene derivatives. It was concluded that

differences in the interactions of groups Xi, corresponding

to the van der Waals and donor–acceptor interactions of

group Xi, had an important role in inclusion complexation

of benzene derivatives and a-CD.

Klein et al. (174) described a method based on MLR

and PLS models for predicting the free energies of

complexation between b-CD and 70 pharmaceutical

compounds. They used some descriptors indicating

volume, shape and lipophilicity such as molecular surface,

ovality, shape index, flexibility, partition coefficient, the

sum of the electrotopological indices that were derived

from TSAR program package. The obtained model, with

R ¼ 0.927 and Q 2 ¼ 0.812, showed a good predictive

ability exemplified by a de novo prediction, using

compounds not included in the deduction of the model.

In the further work, linear and nonlinear regression-based

TSAR generated descriptors used to build QSAR models

of the free energies of complexation between a- b- and g-

CDs and pharmaceutical compounds. To support the

conclusions resulting from the analysis of the regression

equations, energy minimisations and MD simulations were

performed using the MM2 force field (175). An

improvement, reflected in an increased F-value and an

increased cross-validation Q 2, was obtained by introdu-

cing explicitly nonlinearities into the models for all CDs.

While van der Waals interactions were important for

complexation in the case of all three CDs, dipole–dipole

interactions for the a-CD, hydrophobic effect for b-CD

and the HB acceptor and donor capacity of the guest for g-

CD are more dominant and might also stabilise CD–guest

complexes.

Chari et al. developed QSAR models for predicting the

binding constants of 1:1 inclusion complexes between 258

ligands, ranging from drug-like molecules to small polar

organic compounds, and b-CD. Both PLS regression and

MLR and Dragon software generated descriptors were used

to derive the models. The most important descriptor in both

models was the calculated log P, indicating that drugs with

greater lipophilicity form stronger complexes with b-CD

(176). In a similar work, Li et al. constructed a QSAR model

of binding constants of 86 poorly soluble drugs with b-CD

complexes based on TSAR software descriptors. MLR

analysis was applied to develop the QSAR model. They

applied the obtained QSAR model to a data set of 229

organic compounds, which was previously studied by

Pérez-Garrido et al. (177), compared their results and

concluded that the behaviour of the drug molecules with CD

should differ from that of the organic compounds (178).

A significant effort was extended to build QSPR models

of 233 diverse set of organic molecules, the same data set

used by Suzuki (165), with b-CD by Pérez-Garrido et al.

(177). In the first work, they used a number of topological,

physicochemical and 3D descriptors, GA variable selection

method and k-means cluster analysis for the selection of

training and test set compounds to model construction. Many

statistical parameters includingQ 2, correlation coefficient of

test set (R2
pred), bootstrapping testing techniques, Kubinyi

function (FIT) and AIC, randomisation test and applicability

domain of the model were calculated to assess the goodness

of fit, robustness and predictivity of the obtained model.

Among several models developed, topological QSAR model

was able to explain more than 84% of experimental variance

and reasonable interpretation of CD complexation process.

They concluded that hydrophobic and steric (van der Waals)

interactions were the main driving forces for CD complexa-

tion process. In the similar work, they used the same data set

and applied topological substructural molecular design

(TOPS-MODE) approach (179) for the calculation of

descriptors and correlated them withb-CD complex stability

constants by linear multivariate data analysis (180).

Prakasvudhisarn et al. developed SVM-based QSPR

models (181) to predict complex stability constant (ln K),

the standard free energy (DG8), the enthalpy (DH8) and the

entropy change (TDS8) of the 1:1 inclusion complexes of

enantiomeric pairs of 74 selected chiral compounds and b-

CD. Structural properties were calculated by the MOE

program package, and particle swarm optimisation (182)

was adopted for feature selection and linear, polynomial

and Gaussian RBFs used to build QSPR models of the
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chiral guest data set. The obtained models showed good

performance in predicting ln K, DG8, DH8 and TDS8

of chiral guest inclusion complexes with b-CD, by

considering the major selected features with four to eight

descriptors and R 2 . 0.96 and R2
pred . 0.89.

Complexation free energies of neutral, anionic and

cationic aliphatic compounds with a- and b-CD with a set

of empirical and theoretical descriptors that were chosen to

build multiple linear correlation models were described

(183). Molecular polarisability, the maximum absolute

charge located on a guest atom and the molecular dipole

moment to consider electrostatic effects, a modified zero-

order connectivity index to account for the steric effects

and a charge transfer parameter and the octanol–water

partition free energy for the hydrophobic character were

chosen as the descriptors for building MLR models. From

the obtained MLR models, with R 2 . 0.9 and Q 2 . 0.89

for a-CD and R 2 . 0.91 and Q 2 ¼ 0.91 for b-CD, it was

concluded that for both a- and b-CD the most relevant

driving force for the inclusion complexation with aliphatic

species is van der Waals interactions.

4.2 3D-QSAR/QSPR

Classical QSAR/QSPR approaches have some drawbacks,

e.g. only 2D structures considered, provide no unique

solutions, insufficient parameters for describing drug–

receptor interactions, no representation of stereochemistry

or 3D structure of molecules, higher risk of chance

correlations and so on (184). The primary aim of 3D-

QSAR techniques is to establish a correlation of biological

activities of a series of structurally and biologically

characterised compounds with the spatial fingerprints of

numerous field properties of each molecule, such as steric

demand, lipophilicity and electrostatic interactions (185).

An advantage of 3D-QSAR method is that it takes into

account the 3D structures of ligands and additionally is

applicable to sets of structurally diverse compounds.

Unfortunately, there are few works of 3D-QSAR

approaches of stability constants prediction of macrocyclic

inclusion complexes. To our knowledge, the first paper

on CoMFA method, as an approach of 3D QSAR, for

CDs stability constants prediction was reported by Suzuki

et al. (163).

Topological autocorrelation descriptors, an alignment-

independent approach based on the autocorrelation of

certain molecular properties (186), were used to build 3D

QSAR modelling of free energy of complexation between

b-CD and 70 pharmaceutical compounds (187). For

comparison, a variety of descriptors that were

implemented in the TSAR program were used. Both

TSAR and 3D topological distance-based descriptor

models showed approximately the same quality of

predictivity with R 2 . 0.99 and Q 2 . 0.66.

Molecular interaction fields (MIFs) were used in

combination with a small number of geometrical

descriptors to separate nine a-CD complexes into two

classes, respectively, containing complexes having high

log K (log K . 2) and low log K (log K , 2) values.

Structural optimisation, conformational analysis and

descriptor calculation were carried out by MOE program

package. MIFs with two probes, the hydrophilic field

generated by the OH2 probe and the hydrophobic field

generated by the DRY probe, were calculated using the

program GRID. The distances (SL) between the centroid

of the secondary oxygen’s (S) and the centroid of the

aromatic ring (L) of the ligands were used as geometrical

descriptors. A good predictive model with R 2 ¼ 0.93 and

one physicochemical, the ratio between the number of dry

points and the number of water points (r(DRY/OH2)),

descriptor derived from MIF calculation between log K,

1:1 of a-CD and guest molecules was achieved (188).

Recently, Ghasemi et al. (189) applied GRIND-based

3D-QSAR models to predict the stability constants of a

diverse class of 233 organic guest molecules with b-CD.

The variables with the highest impact on the log K values

were related to TIP and DRY probes, which represent

shape field and hydrophobic interactions, respectively. It

was concluded that the size and shape of the molecules as

well as the presence and orientation of hydrophobic groups

were crucial for the stability constant of investigated

compounds with b-CD. Based on the distance node of

variables, it is indicated that the spatial arrangement of

hydrogen bonding regions of molecules is important in

complexation of guest molecule to b-CD.

4.3 Miscellaneous

Besides, QSAR/QSPR techniques of computational

chemistry such as molecular mechanics, MD, quantum

computation, molecular docking and simulation pro-

cedures were widely used to identify the significant factors

contributing the host–guest interaction and to predict the

thermodynamic stability constants of inclusion complexes

of macrocyclics. These methods were commonly used to

calculate and predict the host–guest complexes shapes,

energies, preferred binding orientations, selectivities and

so on. Although these methods are usually time consuming

and need a powerful CPU, these calculations can give an

adequate first guess as to the nature and strength of

inclusion complexation interactions. Computational cal-

culation in host–guest interactions was commonly used

in combination with an experimental procedure such as

NMR and fluorescence methods to obtain structural and

dynamics information and to better understand the forces

between host and guest molecules (190, 191).

In a comprehensive work, applications of compu-

tational chemistry to the study of CDs have been well

reviewed by Lipkowitz (192). The use of quantum
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chemical methods to study cyclodextrin chemistry was

also surveyed by Liu and Guo (193). Docking studies

(194–196), Monte Carlo (MC) simulations (197) and

DFT-based studies (198) were also used for the estimation

of stability constants of CDs and crown ethers.

5. Concluding remarks

QSAR methods, as a progressive tool in modelling and

prediction of many physicochemical properties, are in

constant advancement. Well-established QSAR tech-

niques continue to be used, providing successful results

in rapid and accurate assessment of large set of

compounds. As the reliability of QSAR models strongly

depends on the ability of the models to accurately predict

the activity/property of compounds not included in the

training set, the models must be thoroughly validated both

internally and externally using rigorous cross-validation

techniques. Throughout the review, we have focused on

QSAR techniques to predict the stability (binding)

constants or free energy complexation of some macrocyc-

lic compounds with different guest molecules including

anionic, cationic and neutral molecules.

Although there is an increasing interest in compu-

tational modelling of inclusion complexes of crown ethers

as an important macrocyclic compound, it should be noted

that there are not many publications on structure–property

modelling of stability constants of crown ethers inclusion

complexes especially with neutral molecules. Because of

widespread use of CDs in many different fields, they have

also attracted more interests than other macrocyclic

compounds in QSAR/QSPR and computational chemistry

approaches. Unfortunately, there are few papers on 3D-

QSAR approaches of CDs or crown ethers, and no article

could be found in higher dimensional QSAR, e.g. 4D and

5D-QSAR. These may be due to lack of X-ray crystal-

lographic 3D structures of macrocyclic complexes,

especially in 3D-QSAR studies, or absence of homogenous

data set of guest or host molecules for QSAR studies.

However, there is an increasing interest in the use of QSAR

approaches in host–guest interactions of macrocyclic

complexes. Considering different approaches and the rapid

growth of novel techniques, QSAR/QSPR methods provide

a promising tool for predicting the physicochemical

properties in a more accurate and rapid manner.
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Eriksson, L. J. Chemom. 1996, 10, 521–532.

(77) Wehrens, R.; Putter, H.; Buydens, L. Chemom. Intell. Lab.
Syst. 2000, 45, 35–52.

(78) Schuurmann, G.; Ebert, R.-U.; Chen, J.; Wang, B.; Kühne, R.
J. Chem. Inf. Model. 2008, 48, 2140–2145.

(79) Consonni, V.; Ballabio, D.; Todeschini, R. J. Chem. Inf.
Model. 2009, 49, 1669–1678.

(80) Balaz, S. Quant. Struct.-Act. Relat. 1994, 13, 381–392.
(81) Kubiny, H. Quant. Struct.-Act. Relat. 1994, 13, 285–294.
(82) Akaike, H. IEEE T. Autom. Control 1974, 19, 716–723.
(83) Wager, C.; Vaida, F.; Kauermann, G. Aust. N Z J. Stat.

2007, 49, 173–190.
(84) Pratim Roy, P.; Paul, S.; Mitra, I.; Roy, K. Molecules

2009, 14, 1660–1701.
(85) Katritzky, A.R.; Petrukhin, R.; Tatham, D. J. Chem. Inf.

Comput. Sci. 2001, 41, 679–685.
(86) McNaught, A.D.; Wilkinson, A. IUPAC: Compendium of

Chemical Terminology [Online]. http://goldbook.iupac.
org.

(87) Steed, J.W.; Turner, D.R.; Wallace, K.J. Core Concepts in
Supramolecular Chemistry and Nanochemistry; John
Wiley & Sons, Ltd: USA, 2007.

(88) Driggers, E.M.; Hale, S.P.; Lee, J.; Terrett, N.K. Nat. Rev.
Drug Discov. 2008, 7, 608–624.

(89) Fenton, D.E. Chem. Soc. Rev. 1998, 28, 159–168.
(90) Irwin, G.; Kirk, A.D.; Mackay, I.; Nera, J. Inorg. Chem.

2002, 41, 874–883.
(91) Johnson, J.M.; Chen, R.; Chen, X.; Moskun, A.C.; Zhang,

X.; Hogen-Esch, T.E.; Bradforth, S.E. J. Phys. Chem. B
2008, 112, 16367–16381.

(92) Kotkar, R.; Srivastava, A. J. Inclusion Phenom. Macro-
cyclic Chem. 2008, 60, 271–279.

(93) Bencini, A.; Bianchi, A.; Giorgi, C.; Valtancoli, B.
J. Inclusion Phenom. Macrocyclic Chem. 2001, 41,
87–93.

J.B. Ghasemi et al.628

D
ow

nl
oa

de
d 

by
 [

U
ni

v 
Po

lit
ec

 C
at

] 
at

 1
4:

29
 2

4 
D

ec
em

be
r 

20
11

 



(94) Dean Sherry, A. J. Alloys Compd. 1997, 249, 153–157.
(95) Ariga, K.; Kunitake, T. Applications of Supermolecules –

Molecular Devices and Nanotechnology. In Supramolecular
Chemistry-Fundamentals and Applications; Springer:
Berlin, 2006; pp 137–174.

(96) Barabanov, V.A.; Davydova, S.L. Polym. Sci. USSR 1982,
24, 1007–1042.

(97) Hancock, R.D.; Melton, D.L.; Harrington, J.M.; McDo-
nald, F.C.; Gephart, R.T.; Boone, L.L.; Jones, S.B.; Dean,
N.E.; Whitehead, J.R.; Cockrell, G.M. Coord. Chem. Rev.
2007, 251, 1678–1689.

(98) Korybut-Daszkiewicz, B.; Bilewicz, R.; Wozniak, K.
Coord. Chem. Rev. 2010, 254, 1637–1660.

(99) Ward, T.J.; Farris Iii, A.B. J. Chromatogr. A 2001, 906,
73–89.

(100) Mewis, R.E.; Archibald, S.J. Coord. Chem. Rev. 2010,
254, 1686–1712.

(101) Comba, P.; Martin, B. Modeling of Macrocyclic Ligand
Complexes. In Macrocyclic Chemistry; Gloe, K., Ed.;
Springer: The Netherlands, 2005; pp 303–325.

(102) Comba, P.; Schiek, W. Coord. Chem. Rev. 2003, 238–239,
21–29.

(103) Izatt, R.M.; Bradshaw, J.S.; Nielsen, S.A.; Lamb, J.D.;
Christensen, J.J.; Sen, D. Chem. Rev. 1985, 85, 271–339.

(104) Izatt, R.M.; Bradshaw, J.S.; Pawlak, K.; Bruening, R.L.;
Tarbet, B.J. Chem. Rev. 1992, 92, 1261–1354.

(105) Izatt, R.M.; Pawlak, K.; Bradshaw, J.S.; Bruening, R.L.
Chem. Rev. 1991, 91, 1721–2085.

(106) Izatt, R.M.; Pawlak, K.; Bradshaw, J.S.; Bruening, R.L.
Chem. Rev. 1995, 95, 2529–2586.

(107) Rekharsky, M.V.; Mayhew, M.P.; Goldberg, R.N.; Ross,
P.D.; Yamashoji, Y.; Inoue, Y. J. Phys. Chem. B 1997,
101, 87–100.

(108) SC-Database, The IUPAC Stability Constants Database
[Online]. http://www.acadsoft.co.uk/.

(109) NIST Critically Selected Stability Constants of Metal
Complexes [Online]. http://www.nist.gov/srd/nist46.cfm.

(110) Solov’ev, V.P.; Strakhov, N.N.; Kazachenko, V.P. The
THECOMAC (thermodynamics on complexation of
macrocycles) Database; Institute of Physiologically
Active Compounds: Russia, 1991.

(111) Chandler, K.; Culp, C.W.; Lamb, D.R.; Liotta, C.L.;
Eckert, C.A. Ind. Eng. Chem. Res. 1998, 37, 3252–3259.

(112) Leevy, W.M.; Weber, M.E.; Gokel, M.R.; Hughes-
Strange, G.B.; Daranciang, D.D.; Ferdani, R.; Gokel,
G.W. Org. Biomol. Chem. 2005, 3, 1647–1652.

(113) Bartsch, R.A.; Ivy, S.N.; Lu, J.; Huber, V.J.; Talanov, V.S.
Pure Appl. Chem. 1998, 70, 2393–23400.

(114) Walkowiaka, W.; Kozlowski, C.A. Desalination 2009,
240, 186–197.

(115) Richens, D.A.; Simpson, D.; Peterson, S.; McGinn, A.;
Lamb, J.D. J. Chromatogr. A 2003, 1016, 155–184.

(116) Gokel, G.W.; Leevy, W.M.; Weber, M.E. Chem. Rev.
2004, 104, 2723–2750.

(117) Lehn, J.M. Supramolecular Chemistry: Concepts and
Perspectives; VCH: Weinheim, 1995.

(118) Szejtli, J. Chem. Rev. 1998, 98, 1743–1754.
(119) Del Valle, E.M.M. Process Biochem. 2004, 39,

1033–1046.
(120) Duchene, D.; Wouessidjewe, D. Drug Dev. Ind. Pharm.

1990, 16, 2487–2499.
(121) Ogoshi, T.; Harada, A. Sensors 2008, 8, 4961–4982.
(122) Vyas, A.; Saraf, S.; Saraf, S. J. Inclusion Phenom.

Macrocyclic Chem. 2008, 62, 23–42.

(123) Bricout, H.; Hapiot, F.; Ponchel, A.; Tilloy, S.; Monflier, E.
Sustainability 2009, 1, 924–945.

(124) Eastburn, S.D.; Tao, B.Y. Biotechnol. Adv. 1994, 12,
325–339.

(125) Gramatica, P. A Short History of QSAR Evolution [Online].
www.qsarworld.com/Temp_Fileupload/Shorthistoryofqsar.
pdf.

(126) Taft, R.W.; Abboud, J.-L.M.; Kamlet, M.J.; Abraham,
M.H. J. Solution Chem. 1985, 14, 153–186.

(127) Matsui, Y.; Mochida, K. Bull. Chem. Soc. Jpn. 1979, 52,
2808–2814.

(128) Fellous, R.; Luft, R. J. Am. Chem. Soc. 1973, 95,
5593–5595.

(129) Lopata, A.; Darvas, F.; Stadler-Szoke, A.; Szejtli, J.
J. Pharm. Sci. 1985, 74, 211–213.

(130) Park, J.H.; Nah, T.H. J. Chem. Soc. Perkin Trans. 2 1994,
1359–1362.

(131) Liu, L.; Li, W.-G.; Guo, Q.X. J. Inclusion Phenom.
Macrocyclic Chem. 1999, 34, 413–419.

(132) Guo, Q.X.; Luo, S.H.; Zheng, X.Q.; Liu, Y.C. Chin. Chem.
Lett. 1996, 7, 767–770.

(133) Guo, Q.X.; Luo, S.H.; Liu, Y.C. J. Inclusion Phenom. Mol.
Recognit. Chem. 1998, 30, 173–182.

(134) Liu, L.; Guo, Q.X. J. Phys. Chem. B 1999, 103,
3461–3467.

(135) Guo, Q.X.; Liu, L.; Cai, W.S.; Jiang, Y.; Liu, Y.C. Chem.
Phys. Lett. 1998, 290, 514–518.

(136) Guo, Q.X.; Luo, S.H.; Wang, H.; Zhang, M.S.; Liu, Y.C.
J. Chem. Res. (S) 1996, 1, 38–39.

(137) Guo, Q.X.; Luo, S.H.; Wang, H.; Zhang, M.S.; Liu, Y.C.
Chin. Chem. Lett. 1996, 7, 285–288.

(138) Liu, L.; Li, W.-G.; Guo, Q.-X. J. Inclusion Phenom.
Macrocyclic Chem. 1999, 34, 291–298.

(139) Liu, L.; Guo, Q.X.J. Chem. Inf. Comput. Sci. 1998, 39,
133–138.

(140) Landy, D.; Fourmentin, S.; Salome, M.; Surpateanu, G.
J. Inclusion Phenom. Macrocyclic Chem. 2000, 38,
187–198.

(141) Davies, D.M.; Savage, J.R. J. Chem. Soc. Perkin Trans. 2
1994, 1525–1530.

(142) Davies, D.M.; Deary, M.E. J. Chem. Soc. Perkin Trans. 2
1995, 1287–1294.

(143) Davies, D.M.; Deary, M.E.; Wealleans, D.I. J. Chem. Soc.,
Perkin Trans. 2 1998, 193–195.

(144) Davies, D.M.; Savage, J.R. J. Chem. Res. Synop. 1993, 3,
94–95.

(145) Loukas, Y.L. Int. J. Pharm. 2001, 226, 207–211.
(146) Loukas, Y.L. Anal. Chim. Acta 2000, 417, 221–229.
(147) Solov’ev, V.P.; Varnek, A.A.; Wipff, G. J. Chem. Inf.

Comput. Sci. 2000, 40, 847–858.
(148) Varnek, A.; Wipff, G. J. Chem. Inf. Comput. Sci. 2002, 42,

812–829.
(149) Solov’ev, V.P.; Varnek, A.A. Russ. Chem. Bull. 2004, 53,

1434–1445.
(150) Solov’ev, V.P.; Kireeva, N.V.; Tsivadze, A.Y.; Varnek,

A.A. J. Struct. Chem. 2006, 47, 298–311.
(151) Katritzky, A.R.; Fara, D.C.; Yang, H.; Karelson, M.;

Suzuki, T.; Solov’ev, V.P.; Varnek, A. J. Chem. Inf.
Comput. Sci. 2004, 44, 529–541.

(152) Zhokhova, N.; Bobkov, E.; Baskin, I.; Palyulin, V.;
Zefirov, A.; Zefirov, N. Moscow Univ. Chem. Bull. 2007,
62, 269–272.

(153) Presnell, S.R.; Cohen, F.E. Annu. Rev. Biophys. Biomol.
Struct. 1993, 22, 283–298.

Supramolecular Chemistry 629

D
ow

nl
oa

de
d 

by
 [

U
ni

v 
Po

lit
ec

 C
at

] 
at

 1
4:

29
 2

4 
D

ec
em

be
r 

20
11

 



(154) Schwenker, F. Artificial Neural Networks in Pattern
Recognition, 1st ed.; Springer: Germany, 2010; p 280.

(155) Maddalena, D.J. Expert Opin. Ther. Pat. 1996, 6,
239–251.

(156) Sumpter, B.G.; Getino, C.; Noid, D.W. Annu. Rev. Phys.
Chem. 1994, 45, 439–481.

(157) Stefanek, G.; Fildes John, M. Expert Systems and Neural
Networks in Food Processing. In Food Safety Assessment;
American Chemical Society: USA, 1992; Vol. 484, pp
166–180.

(158) Tetko, I.V.; Solov’ev, V.P.; Antonov, A.V. J. Chem. Inf.
Model. 2006, 46, 808–819.

(159) Gakh, A.A.; Sumpter, B.G.; Noid, D.W.; Sachleben, R.A.;
Moyer, B.A. J. Inclusion Phenom. Macrocyclic Chem.
1997, 27, 201–213.

(160) Shi, Z.G.; Mccullough, E.A. J. Inclusion Phenom.
Macrocyclic Chem. 1994, 18, 9–25.

(161) Ghasemi, J.; Saaidpour, S. J. Inclusion Phenom.
Macrocyclic Chem. 2008, 60, 339–351.

(162) Ahmadi, S. J. Inclusion Phenom. Macrocyclic Chem.
[Online] 2010. http://www.springerlink.com/content/
t11804241344p312/ (accessed Oct 19, 2010). DOI:
10.1007/s10847-010-9881-6.

(163) Suzuki, T.; Ishida, M.; Fabian, W. J. Comput. Aided Mol.
Des. 2000, 14, 669–678.

(164) Constantinou, L.; Gani, R. AlChE J. 1994, 40, 1697–1710.
(165) Suzuki, T. J. Chem. Inf. Comput. Sci. 2001, 41,

1266–1273.
(166) Samudrala, R.; Moult, J. J. Mol. Biol. 1998, 275, 895–916.
(167) Carpignano, R.; Marzona, M.; Cattaneo, E.; Quaranta, S.

Anal. Chim. Acta 1997, 348, 489–493.
(168) Khuri, A.I.; Mukhopadhyay, S. Wiley Interdiscip. Rev.:

Comput. Stat. 2010, 2, 128–149.
(169) Bodor, N.; Buchwald, P. J. Phys. Chem. B 1997, 101,

3404–3412.
(170) Bodor, N.; Buchwald, P. J. Inclusion Phenom. Macrocyc-

lic Chem. 2002, 44, 9–14.
(171) Buchwald, P. J. Phys. Chem. B 2002, 106, 6864–6870.
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Quantitative structure–activity relationship (QSAR) methods, are progressive and promising tools in modeling and

prediction of many physiochemical properties, in host–guest interactions of macrocyclic complexes.

J.B. Ghasemi, M. Salahinejad and M.K. Rofouei

Review of the quantitative structure–activity relationship modelling methods on estimation of formation constants of

macrocyclic compounds with different guest molecules
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